Advertisement
In the study published in the journal ACS Central Science, the researchers immunized mice with nanoparticles that mimic SARS-CoV-2, the virus that causes COVID-19, by displaying multiple copies of the receptor-binding domain (RBD) antigen.
Most protein-based vaccines train the immune system to recognize the RBD, a portion of the SARS-CoV-2 spike protein, which the virus uses to enter and infect human cells.
The spike protein binds to the ACE-2 receptor on host cell surfaces, which acts as a gateway for the entry of the virus.
Related Articles
Advertisement
The researchers from the University of Chicago, US, had previously developed a vaccine delivery tool called polymersomes — self-assembling, spherical nanoparticles that can encapsulate antigens and adjuvants — and then release them inside immune cells.
Adjuvants are helper molecules that boost the immune response.
Polymersomes trigger robust T cell immunity, the researchers said.
The team wondered if they could further improve the antibody response by engineering the nanoparticles to mimic viruses by displaying multiple copies of the RBD on their surfaces.
The researchers made polymersomes that were similar in size to SARS-CoV-2 and decorated them with many RBDs.
After characterizing the nanoparticles in a lab, they injected them into mice, along with separate polymersomes containing an adjuvant, in two doses that were three weeks apart.
For comparison, they immunized another group of mice with polymersomes that encapsulated the RBD, along with the nanoparticles containing the adjuvant.
Although both groups of mice produced high levels of RBD-specific antibodies, only the surface-decorated polymersomes generated neutralizing antibodies that prevented SARS-CoV-2 infection in cells.
Both the surface-decorated and encapsulated RBDs triggered robust T cell responses, the researchers said.
Although the new vaccine still needs to be tested for safety and efficacy in humans, it could have advantages over mRNA vaccines about widespread distribution in resource-limited areas, they said.
That is because the surface-decorated polymersomes are stable and active for at least six months with refrigeration, the researchers said.
In contrast, mRNA vaccines require subzero temperature storage, they added.